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Abstract Background: Acute respi-
ratory distress syndrome (ARDS) is
the most severe manifestation of acute
lung injury (ALI). In patients who
survive the acute injury the process
of repair and remodelling may be an
independent risk factor determining
morbidity and mortality. This review
explores recent advances in the field
of fibroproliferative ARDS/ALI, with
a special emphasis on (a) the primary
contributing factors with a focus
on cellular and soluble factors, and
(b) mechanisms involved in repair and
remodelling as they pertain to the im-
portance of cell death, re-population,
and matrix deposition. Discussion:
Factors influencing progression to fi-
broproliferative ARDS vs. resolution
and reconstitution of the normal pul-
monary parenchymal architecture are
poorly understood. Determinants of
persistent injury and abnormal repair
and remodelling may be profoundly
affected by both environmental and
genetic factors. Moreover, cumulative

evidence suggests that acute inflam-
mation and fibrosis may be in part
independent and interactive processes
that are autonomously regulated
and thus amenable to individual
and specific therapy. Conclusions:
Although our current understanding
of these processes is limited by the
inability to accurately replicate the
complex human physiology in labora-
tory settings, it has recently become
apparent that the process of repair
and remodelling begins early in the
course of ARDS/ALI and may be
determined by the type of pulmonary
injury. Understanding the mech-
anisms leading to and regulating
fibroproliferative changes may con-
tribute to the development of novel
early therapeutic interventions in
ARDS/ALI patients.
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Introduction

Acute respiratory distress syndrome (ARDS), the most se-
vere manifestation of acute lung injury (ALI), is typically
described as a stereotyped response to lung injury with
transition from alveolar capillary damage to a fibroprolif-
erative phase, independent of initial cause [1]. Most ARDS
patients survive the acute initial phase of lung injury and
progress to either reparation of the lesion or evolution of
the syndrome [2]. Despite advances in the management of
ARDS, mortality remains high (40%). For those patients

who die extended pulmonary fibrosis is seen in 55% at aut-
opsy, suggesting that dysregulated repair may contribute to
the morbidity and mortality in these patients. The factors
determining whether pulmonary fibrosis or restoration of
the normal pulmonary architecture occur in ARDS remain
unknown. Moreover, the processes characterizing lung in-
jury and repair are modulated by ongoing external pro-
injurious or anti-injurious stimuli (e. g. ongoing infection
or/and resuscitation) and are a result of genetic factors.
Repetitive biochemical and biophysical stimuli not only
play a role in the natural history of ALI/ARDS but, when
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treated, can lead to improved clinical outcomes. Although
acute and persistent inflammation is a critical determinant
of fibroproliferative changes in the lung, multiple lines of
evidence, suggest that the fibrotic process may be (in part)
an independent risk factor that is autonomously regulated,
and thus amenable to separate therapy [3–5].

Recent reviews have eloquently addressed the devel-
opment of fibroproliferation in ALI/ARDS [3–6]. This
contribution presents an abbreviated overview of recent
advances in the understanding of (a) the primary factors
contributing to the development of fibroproliferation with
a focus on cellular and soluble factors and (b) mechanisms
involved in repair and remodelling, especially as they
pertain to the importance of cell death, re-population
and matrix deposition. Current understanding of these
processes is limited by the inability to accurately replicate
the complex human physiology in laboratory settings.

Inflammation and fibroproliferation

Until recently the natural history of fibroproliferative
ARDS had been described as developing over three
distinct phases: an inflammatory or exudative, a prolif-
erative and a fibrotic phase. Recently, however, it has
become apparent that the process of fibrosing alveolitis
begins early in the course of ARDS [7, 8]. Transcriptional
responses in ALI genes involved in inflammation and
repair are differentially expressed simultaneously very
early in the course of injury [9], and many mediators are
common to both processes. This paradigm shift in our
understanding of injury and repair is further supported by
evidence that patients with well known chronic fibrotic
lung disorders have persistently elevated levels of acute
injury related cytokines and chemokines in alveolar
lavage samples [10, 11]. Conversely, factors previously
thought to be primarily involved in chronic phases of lung
injury such as transforming growth factor (TGF) β, have
been shown to mediate acute injury, specifically acute
pulmonary oedema in ALI [12]. Figure 1 is a schematic
representation of processes resulting in fibrosis, under-
scoring co-regulation, as opposed to sequential regulation
of these processes.

Optimal repair requires that a provisional fibrin ma-
trix on the basement membrane provide a platform for
cell adhesion, spreading, and migration. In pathological
fibrosis, provisional matrices formed in the context of
injury persist, emitting signals to activate an inflammatory
response leading to relentless fibroblast migration and pro-
liferation and to expansion of connective tissue elements
leading to permanent matrix remodelling. Disordered
repair is characterized by impaired fibrinolysis of the
inflammatory coagulum, fibrocellular proliferation, im-
paired angiogenesis and distortion of the lung parenchyma.
Intra-alveolar fibrosis (remodelling) results in alveolar
obliteration, and ultimately loss of functional alveolar cap-

Fig. 1 Schematic of dysregulated repair. Hypothetical scheme
of molecular mechanisms of fibroproliferation in ALI/ARDS.
Persistent and exaggerated inflammation occurs secondary to either
unresolved inflammation or/and repeated injury or alveolar epithe-
lial cell activation. This is modulated by non-modifiable risk factors
for fibroproliferation such as age, gender and genetic susceptibility.
Inflammatory and parenchymal cells release factors inducing fibro-
blast migration and proliferation and changes in cell phenotype
(myofibroblasts). The microenvironment of the injured lung lead
to alveolar epithelial cell drop-out (apoptosis and/or necrosis),
resulting in loss of normal function. The provisional matrix contrib-
utes to ongoing phenotypic changes in cells involved in the repair
system and in the presence of profibrotic stimuli irreversible
changes in extracellular matrix architecture occurs resulting in
erratic remodelling of the lung parenchyma, resulting in a gain of
abnormal function

illary units. In this context, resulting persistent respiratory
failure secondary to progressive fibrosis is associated with
poor prognosis [13].

Primary contributing factors to repair
and remodelling in ALI/ARDS

Cellular component

Parenchymal cells: epithelial, endothelial and fibroblasts

Repair is the process of ‘replacing injured tissue by re-
generating native parenchymal cells and filling in defects
with fibroblast tissue’ [14]. Diffuse alveolar damage with
denudation of the alveolar membrane is characteristic
of ARDS. Efficient alveolar epithelial repair may re-
duce the development of fibrosis, since the presence of
an intact alveolar epithelial layer suppresses fibroblast
proliferation and matrix deposition. Impaired or delayed
re-epithelialization may result from loss of proliferative
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Fig. 2 Important contributors to the development of fibroprolifera-
tive ARDS. Progressive fibroproliferation results from dynamic al-
terations in the alveolar microenvironment that eventually promotes
loss of alveolar epithelial cells and accumulation of activated fibrobl-
asts/myofibroblasts. These alterations include the presence of or
activation of profibrotic cytokines, growth factors and chemokines;
eicosanoid imbalance with relative deficiency in PGE2; impaired
fibrinolysis; overproduction of tissue inhibitors of metallopro-
teinases (TIMPs) relative to matrix metalloproteinases (MMPs);
and a state of elevated oxidative stress. Key cell types contribute to

this process including parenchymal cells (epithelial, endothelial and
fibroblasts) and myeloid derived cells (macrophages, neutrophils
and lymphocytes). IL8, interleukin 8; TNFα, tumour necrosis factor
α; PDGF, platelet-derived growth factor; EGF, epithelial growth
factor; TGFβ, transforming growth factor β; TGFα, transforming
growth factor α; PGE2, prostaglandin E2; IL-RA, interleukin re-
ceptor antagonist; PGI2 prostacyclin; ICAM, intracellular adhesion
molecule; IL4, interleukin 4; IFNγ, interferon γ; IGF, insulin-like
growth factor; IL-1β, interleukin 1β; Th1, T-helper cell type 1 re-
sponses; Th2, T-helper cell type 2 responses. Adapted from Ref. [6]

capacity, altered apoptosis or ineffective migration and
differentiation of alveolar cells and their progenitors. Epi-
thelial repair involves close coordination and interaction
between the alveolar type II cell (AT-II) and various cell
types, including mesenchymal cells, endothelial cells (EC)
as well as the extracellular matrix, which may coordinate
by a variety of soluble mediators released into the alveolar
space the process of re-epithelialization [5].

The importance of the alveolar epithelium as a primary
mediator of fibroproliferation after ALI can be inferred
from studies of bleomycin induced lung injury. In this
model failure to express the integrin αvβ6 (adhesion

molecule that binds matrix, anchors cells and activates
TGF-β) confers almost complete protection against
bleomycin induced lung injury and fibrosis in mice [15].
Similarly, the function of the endothelium has been
inferred from experiments exploring the role of cyclo-
oxygenase (COX) 2 derived eicosanoids in pulmonary
fibrosis, where mutations in the ligand receptor pair prosta-
cyclin and its receptor derived from ECs confers suscepti-
bility to bleomycin induced lung injury and fibrosis [16].

Ineffective repair and pathogenic fibrosis has also
been explained by ‘loss of function’ due to increased
rates of alveolar epithelial cell ‘dropout’ resulting from
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apoptotic or necrotic death after severe alveolar membrane
denudation. Epithelial drop-out has been implicated in the
other forms of chronic fibroproliferative lung disorders.
Interestingly, not only necrosis but epithelial apoptosis
has been associated with the development of pulmonary
fibrosis [17]. The role of EC apoptosis is much less under-
stood, although endothelial functional drop-out has been
implicated as a trigger for fibrosis in scleroderma [18].

In addition to the loss-of-function, the ‘gain-of-
function’ associated with abnormal fibroblast repopulation
may be important. Fibroblasts from fibroproliferative
lesions can display an enhanced proliferative phenotype
independent of continuous exogenous stimulation [19].
Recently Horowitz et al. [19] isolated and characterized
a novel population of mesenchymal cells from ARDS
patients. Cells isolated from patients with persistent or
nonresolving ARDS had an enhanced activational profile
characterized by enhanced prosurvival signalling and
an antiapoptotic phenotype. These findings support the
concept that apoptosis of mesenchymal cells is an essential
component of normal repair and resolution of ARDS and
suggest that dysregulation of this process contributes to
persistent ARDS. Figure 2 illustrates the contribution of
key cell types to the fibroproliferative process.

Epithelial injury and re-epithelialization

Key features of the alveolar remodelling process during
recovery from injury are AT-II cell migration, proliferation
and regeneration, which rapidly reseal the denuded alveo-
lar surface. Recent experiments suggest that signalling
pathways important in lung remodelling, repair and regen-
eration after ALI recapitulate respiratory ontogeny [20].
Presumably, after injury normally quiescent AT-II cells
transiently regain the capacity to proliferate and express
numerous cell cycle related genes, as well as secrete and
activate matrix metalloproteases—fundamental enzymes
for digestion of the basement membrane. Transdifferenti-
ation of epithelial cells into matrix producing fibroblasts
and myofibroblasts with enhanced matrix turnover has
been suggested as a mechanism for remodelling after
injury. At least two pathways initiated by key mediators
of epithelial and mesenchymal cell cross-talk during
embryonic airway morphogenesis have been implicated in
ALI. The first is sonic hedgehog (SHH), which promotes
proliferation of neuroendocrine cells in airway epithelium
and has been demonstrated to be activated within the air-
way epithelium during repair of acute airway injury [21].
The second is related to β-catenin [22], a central regulatory
protein in the Wnt cascade which controls temporal and
spatial pulmonary morphogenesis.

Another important process involved in the reconstitu-
tion of alveolar membrane is cellular regeneration. Until
recently this was thought to occur from resident epithelial
progenitor cells located at the base of submucosal glands

and ducts that differentiate into airway epithelial cells [23].
These cells express markers of early epithelial differentia-
tion such as cytokeratins 5 and 14 [24]. Under homeostatic
conditions there are a sufficient number of resident pro-
genitor cells to replace the continuous loss of airway epi-
thelial cells. However, after significant injury the ability of
local cells to reconstitute the denuded epithelium is over-
whelmed and circulating progenitor cells are recruited to
areas of injury to contribute to repair. It has been proposed
that bone marrow stromal cells have the potential to dif-
ferentiate into lung epithelial cells [25, 26]. Bone marrow
mesenchymal cells have been shown to form pulmonary
epithelial cells of both proximal and distal airways [27].
Transfer of bone marrow derived mesenchymal stem cells
may protect the lung against bleomycin-induced lung in-
jury [28]. Recently the first set of experimental evidence
demonstrating that CK5+ bone marrow derived progeni-
tor cells are recruited to the airway epithelium in response
to injury was presented by Gomperts et al. [29]; homing
signals promoting recruitment to sites of injury appear to
depend upon interaction between the CXCR4 receptor and
the ligand CXCL12.

The role of apoptosis in repair and remodelling

Studies indicate that apoptosis contributes to the pathogen-
esis of lung fibrosis as well as to its resolution [30]. Apop-
tosis can be detrimental or beneficial, depending on the
cell type, the circumstances and the timing. While myo-
fibroblast and inflammatory cell apoptosis might be bene-
ficial [31], excessive AT-II cell apoptosis could lead to the
destruction of alveolar septa and loss of the ‘scaffolding’
intended for alveolar repair.

The notion that AT-II cell apoptosis is involved in
the initiation and/or progression of fibrotic lung disease
is supported by various experimental animal models of
fibrosis [32]. Apoptotic epithelial cells can be found in the
damaged alveolar epithelium of patients with ARDS [33].
In the resolution phase apoptosis of type II pneumocytes
largely responds to the disappearance of excess epithelial
cells. The Fas ligand mediated apoptosis pathway has been
the main apoptotic mechanism implicated in AT-II cell
death. Bronchoalveolar lavage (BAL) fluid from patients
with ARDS contains elevated concentrations of membrane
bound and soluble Fas ligand (sFasL); and pneumocytes
from patients with ALI/ARSD express sFasL and mem-
brane bound Fas, suggesting that the Fas system plays
a role in ARDS/ALI related apoptosis [34]. Angiotensin II
(ANG II) appears to induce AT-II cell apoptosis by this
pathway [35]. TGF-β has also been shown to induce
Fas-ligand mediated apoptosis of AT-II cells [36].

Apoptosis of epithelial cells and neutrophils are inter-
related events. Apoptosis of myeloid cells probably plays
an important role in attenuating lung injury and may ulti-
mately benefit the outcome of patients with ARDS [37]. In
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response to Fas ligand or tumuor necrosis factor (TNF) α,
bronchiolar epithelial cells undergo apoptosis and secrete
interleukin (IL) 8 and nuclear factor (NF) κB, which in turn
suppresses the apoptosis of neutrophils, increasing lung in-
jury. The alveolar epithelium is one of the primary target
of Fas-mediated apoptosis in ALI [38].

The activated neutrophil and its by-products

Neutrophil infiltration is the hallmark of acute inflamma-
tion. Excessive quantities of neutrophil products including
elastase, collagenase, reactive oxygen species, and cy-
tokines are present in patients with ARDS. Blocking
antibodies to adhesion molecules, notably β2 integrins,
demonstrates that while neutrophil migration still occurs
injury is reduced. The presence of neutrophils however,
is not absolutely required for the development of ALI;
this can occur in neutropenic patients [39] and in animal
models of lung injury after neutrophil depletion [40].
During the repair process neutrophils recruited to the
site of injury may contribute to host defence and injury,
and to the repair process itself. Few studies have ad-
dressed the development of pulmonary fibrosis in the
absence of neutrophils. In neutrophil-depleted bleomycin-
treated hamsters collagen synthesis is enhanced [41],
suggesting a role for neutrophils in membrane repair
and remodelling. Recently neutrophil defensins have
been implicated in wound repair. In vitro studies demon-
strated that neutrophil defensins enhance proliferation
of human lung epithelial [42] and epithelial wound
closure [43].

Neutrophil elastases are involved in destroying ECs.
Soluble cadherins (an endothelial junction protein) have
been identified in the serum of ARDS patients, suggesting
an elastase-mediated proteolysis of the EC and disruption
of the EC junction. This is further supported by the
presence of thrombomodulin (an EC surface anticoagulant
protein) in the serum of patients with ARDS, indicating
the proteolytic release of an EC membrane protein [44].
Moreover neutrophil elastases are clearly involved in
mucin biogenesis (key glycoproteins in airway health
and disease). Although this glycoprotein has been shown
to play an important role in chronic lung diseases, few
studies have addressed mucin production in ARDS. Serum
levels of mucin have been reported to be at least 20 times
that of patients with other chronic inflammatory lung
diseases [45], suggesting that the activity of neutrophil
elastases extend much beyond simple proteolytic activity.
Exaggerated mucin production may contribute to airway
obstruction and remodelling by mucus and consequent
high morbidity and mortality associated with chronic
fibroproliferative and inflammatory lung diseases [46]. In
a single study serial measurements of serum mucin levels
in ARDS patients were inversely correlated with static
respiratory system compliance and P:F ratio (measurement

of oxygenation) and positively correlated with lung injury
scores [45].

Mononuclear phagocytes

Macrophages have been thought to be important in the
progression of ALI to fibroproliferative ARDS as they
are present in high numbers and release a variety of
mediators and growth factors that act as potent mitogens
and chemotractants for fibroblasts and smooth muscles
cells resulting in a dramatic proliferative response in these
cell types [47]. After lung injury alveolar macrophages
are found in contact with alveolar epithelial cells in
the alveolar space while circulating monocytes are con-
tained within the vascular space in contact with ECs.
Alveolar macrophages secrete numerous proinflammatory
mediators (IL-1β, IL-4 and IL-13) and growth factors
TGF-β, TGF-α, platelet-derived growth factor, fibroblast
growth factor, insulin-like growth factor I, and other
epidermal growth factor-like molecules. These peptide
growth factors influence mesenchymal cell migration,
proliferation and extracellular matrix deposition, thus
implicating them in the progression of fibroproliferative
lung disorders [48]. Moreover, alveolar macrophages are
significantly activated after ventilator-induced lung injury,
and they have been shown to be a source of ongoing
inflammatory mediators in response to it [49]. The precise
role of macrophages in ALI, however, is not well defined.
Recent papers have shown that pharmacological depletion
of alveolar macrophages may lead to deterioration in
pulmonary injurious parameters [50, 51]. These studies
suggest a potential role for these cells in lung protection
or repair.

In contrast to alveolar macrophages, little is known
about the role of circulating monocytes in fibropro-
liferation. Monocytes rapidly marginate to the lungs
after induction of pulmonary injury in animal models of
ALI [52]. Injection of activated wild-type donor leucocytes
to wild-type or TNF-α receptor double knockout (deficient
in R1 and R2) recipients demonstrate that lung-marginated
monocytes can induce TNF-dependent upregulation of
adhesion molecules on pulmonary endothelial cells. Injec-
tion of activated donor leukocytes from TNF-α knock-in
mice that express uncleavable mutant membrane TNF-α
also induced adhesion molecule upregulation in wild-type
recipients without a systemic soluble TNF release. These
results reveal a potential role for cell–cell mediated
regulation of pulmonary microcirculation in inflammation,
and possibly in repair during ALI [53].

Soluble component

IL-1β

The role of IL-1β in fibroproliferative ARDS remains
controversial. On one hand, BAL from patients with early
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ALI has increased IL-1β dependent mitogenic effect on
cultured fibroblasts [54] and induces collagen synthesis
(collagen types I and III). On the other, it is involved in in-
hibiting fibroblast proliferation by inducing prostaglandin
E2 (PGE2) [55]. The secretion of PGE2 can also be in part
induced by IL-1 receptor antagonist (IL-1Ra) [56]. IL-1Ra
is a naturally occurring antagonist of IL-1β and has been
associated with a number of fibroproliferative diseases
and wound healing [57]. Elevated levels of IL-1Ra may at-
tenuate IL-1β bioactivity during the pathogenesis of other
diseases of matrix remodelling thus presumably creating
a local environment that favours fibroproliferation and
matrix deposition [58]. Absence of IL-1Ra may lead to
impaired wound healing and reciprocal suppression of
TGF-β signal pathway, impairing collagen deposition and
vascular endothelial growth factor mediated neovascu-
larization in wound healing [57]. The most compelling
evidence implicating IL-1β in pulmonary fibrosis comes
from experiments involving transient overexpression of
IL-1β induce tissue injury, subsequent local production of
platelet-derived growth factor and TGF-β, and resultant
pulmonary fibrosis [59].

Arachidonic acid metabolites

The study of arachidonic acid metabolites in fibrosis
has significantly contributed to our understanding of the
dichotomy between inflammation and fibrosis. COX-2
deficient mice are susceptible to pulmonary fibrosis [60].
Mice deficient in CC chemokine receptor 2 (CCR2), the
receptor for monocyte chemottractant protein 1, were
protected from induced pulmonary fibrosis but apparently
not because of reduced inflammation. Alveolar epithelial
cells from CCR2-deficient mice produce more PGE2,
which has been associated with decreased fibrosis [61].
PGE2 inhibits the response of mesenchymal cells to
profibrotic cytokines and is diminished in the lungs of
patients with pulmonary fibrosis [62]. This has been linked
to E prostanoid receptor loss following fibrotic lung injury.
Lack of E prostanoid 2 expression is correlated with an
inability of fibroblasts from bleomycin-treated mice to
be inhibited by PGE2 [63]. Moreover, PGE2 and nitric
oxide appear to function in parallel as autocrine/paracrine
mediators of cytokine-driven fibroblast inhibition of
the contraction of collagen gels and may contribute to
remodelling during repair and inflammation [64]. Recent
experiments have questioned the primary role of PGE2 in
decreasing pulmonary fibrosis and implicated the ligand
receptor pair prostacyclin and its receptor (IP) derived
from ECs as the key mediator in limiting fibrosis in
bleomycin lung injury models [16]. No change in response
to bleomycin was noted in E prostanoid 2 and 4 receptor
deficient mice. In stark contrast, IP deficiency limited
both the development of the disease and consequential
alterations in lung mechanics.

Transforming growth factor β

TGF-β plays a critical role in the fibroproliferative re-
sponses of the lung [65]. The TGF-β1 gene is upregulated
in response to ALI [66]. The processes stimulated by
TGF-β are critical to wound repair. TGF-β activation leads
to reduction in cytokine production, promotes fibroblast
recruitment, differentiation of myofibroblasts, and stimu-
lation of extracellular matrix proteins. Animal studies have
shown that expression levels of several TGF-β inducible
genes are dramatically increased as early as 2 days after
the induction of injury. In a model of ALI induced by
nickel exposure, genes that decreased the most after
nickel exposure were associated with fluid absorption,
surfactant and phospholipid synthesis. Up-regulated genes
included TGF-β inducible genes involved in the regulation
of extracellular matrix function, fibroproliferation and
fibrinolysis [9].

The significance of TGF-β in the regulation of the
fibroproliferative phase of ARDS can be inferred from
experimental data demonstrating that pharmacological
inhibition of TGF-β protected wild-type mice from pul-
monary oedema induced by bleomycin or Escherichia
coli endotoxin [12]. In animal models, transfer of soluble
TGF-β type II receptor ameliorates fibroproliferative
changes in rat irradiated lungs [67]. In ARDS TGF-β
expression may: (a) affect the gene expression of extracel-
lular matrix molecules in stroma cells inducing collagen
synthesis and inhibiting collagenase production [68];
(b) induce fibroproliferation [8], (c) establish an apparent
state of autocrine stimulation in structural cells, including
fibroblasts, resulting in chronic activation and possible
differentiation to a more aggressive phenotype [69],
and (d) promote the development of non-cardiogenic
pulmonary oedema [12]. Resolution of pulmonary oedema
is associated with improved clinical outcome [70] (the role
of TGF-β in acute non-cardiogenic pulmonary oedema
is further described in the accompanying contribution by
Rocco and Pelosi).

Mechanisms of repair and remodelling

Stereotyped response to injury: pulmonary
vs. extrapulmonary ALI

It remains unclear as to whether the fibroprolifera-
tive response to injury occurs in a stereotypical or an
injury-specific manner. Evidence that this may be injury
dependent comes from studies suggesting that pulmonary
and extrapulmonary ARDS is pathologically different (see
in the accompanying contribution by Negrini). Presumably
after a direct insult the primary structure injured is the
pulmonary epithelium. When the insult is extrapulmonary
the main target for damage is the pulmonary endothe-
lium [71, 72]. Figure 3 illustrates differences in matrix
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Fig. 3 Difference in matrix in pulmonary and extrapulmonary
ARDS. a–i Morphological changes in early stages of diffuse
alveolar damage from lungs of controls (normal and congestive
heart failure patients), pulmonary and extrapulmonary ARDS
patients. a Lungs from control show preserved architecture and thin
alveolar septa. b Lung in primary pulmonary ARDS, characterized
by architectural distortion and a homogeneous pattern of interstitial
cell proliferation with hyaline membrane deposition along the
internal surface of the alveolar wall (arrows). Alveolar spaces can
be seen filled with exuberant plugs of fibrin. c Extrapulmonary
ARDS, characterized almost exclusively by the presence of hyaline
membrane lining alveolar walls and preserved pulmonary archi-
tecture. d–f Collagenous fibre staining from controls, pulmonary

and extrapulmonary ARDS. Differences can be seen in collagen
deposition between pulmonary and extrapulmonary ARDS. Lungs
from the control groups and extrapulmonary ARDS (d, f) show
preserved alveolar wall lining while in contrast patients with pul-
monary ARDS (e) show dramatic distortion of the architecture and
a diffuse picture of alveolar thickening associated with interstitial
cell proliferation and hyaline membrane deposition. g–i Changes in
alveolar elastic fibres. In lung samples from controls and extrapul-
monary ARDS groups (g, i) the architecture of elastic components
in the alveolus is maintained. h from lungs with primary pulmonary
ARDS demonstrate sparse and fragmented bundles of elastic
system fibres. a–c H&E × 100; d–f picrosirius × 100; g–i Weigert’s
Resorcin Fuchin × 100 (reproduced with permission from [98])

remodelling in pulmonary vs. extrapulmonary ARDS.
Here primary ARDS is associated with a higher degree of
pulmonary architectural distortion, cellular proliferation,
collagen deposition and fragmentation of elastic bundles.
These differences have not translated into differences in
outcome, and no clear mechanistic explanations have been

documented, but this may have significant implications for
therapy.

A recent study has suggested that lung COX-2 gene
expression is induced only by indirect mechanisms related
to the systemic response to endotoxin rather than directly
in response to inhaled endotoxin [73]. In contrast, release
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of the anti-inflammatory cytokine IL-10 is associated with
a threefold increase in BAL fluid from animals exposed
to an intrapulmonary source of ALI [74]. Moreover,
given the same pulmonary mechanical dysfunction,
independently of the cause of injury, an insult to the
pulmonary epithelium has been proposed to lead to
a more pronounced pro-inflammatory response than an
injury to the endothelium [75]. Interestingly, however, the
amount of collagen (matrix remodelling) may be similar
in both pulmonary and extrapulmonary ALI, implying that
inflammation and fibrosis are dissociated.

Resolution vs. fibrosis

Functional recovery from ARDS/ALI depends upon reso-
lution of the underlying disorder: oedema clearance and
resorption of the coagulum. Oedema clearance has been
reviewed in detail [70]. Briefly, liquid is gradually cleared
from airspaces by ion pumps that transport sodium with
osmotically driven water movement across the alveolar
epithelial membrane. Catecholamines may expedite fluid
resorption, and delayed fluid clearance has been purported
to impact negatively on resolution of ARDS/ALI. The
following section reviews the repair, resorption and
remodelling of the coagulum, focusing on the role of the
coagulation cascade and rennin-angiotensin system.

Coagulation-fibrinolysis and the provisional membrane

The alveolar wall is an extremely delicate structure.
The lung defends this precarious barrier from structural
damage by expressing a high level of procoagulants. The
alveolar proteinaceous exudate provides substrate for
thrombin activation and fibrin formation. Local thrombin
activation of activated protein C and complexing of throm-
bin to plasma-derived anti-thrombin III limits thrombin
formation. Concurrently, low but significant levels of
plasminogen activator urokinase (uPA) are continuously
released along alveolar surfaces to facilitate resolution of
extensive fibrin deposition on the basement membrane.
Deficiency in urokinase and tissue plasminogen activators
results in spontaneous appearance of fibrin and lung
fibrosis in mice [76]. Mice with homozygous deletion of
the plasminogen activator inhibitor 1 gene [PAI-1 (-/-)] are
relatively protected from bleomycin-induced pulmonary
fibrosis [77, 78]. Fibrosis is also reduced when plasmino-
gen activation is enhanced in mice genetically engineered
to express an inducible uPA transgene or after administra-
tion of uPA gene [79]. Conversely, fibrosis is worsened in
mice having a constitutively active PAI-1 transgene or in
mice that are genetically deficient in plasminogen [80].
Moreover, thrombin and factor Xa exert potent pro-fibrotic
effects via proteolytic activation of the PAR-1 and the
production of potent pro-fibrotic mediators [81]. PAR-1

expression also increased in response to lung injury and
direct thrombin inhibition attenuates the fibrotic response
to bleomycin in vivo [82]. Decreases in activated protein
C levels are associated with increased collagen deposition
in the lung [83].

The pulmonary endothelium is also actively involved
in the fibrinolytic process, expressing plasminogen ac-
tivators as well as their inhibitors. The EC fibrinolytic
activity appears to be affected by several ARDS-related
mediators including endotoxin, IL-1β, TNF-α and throm-
bin. Depression of fibrinolytic activity occurs as a result
of inhibition of uPA by plasminogen activators, or series
inhibition of plasmin by antiplasmins. Locally increased
amplification of PAI-1 is largely responsible for this
fibrinolytic defect [84]. The uPAR/PAI1 system has also
been proposed to coordinate with integrins to regulate
cell–cell matrix interactions [85].

Resorption and removal of the provisional membrane

In parallel with resorption of proteinaceous deposits is the
removal of other matrix components. Imbalanced turnover
of extracellular matrix is a hallmark of tissue injury.
Persistent inflammation and fibroproliferation may result
from failure to adequately remove extracellular matrix.
Matrix metalloproteinases and their inhibitors (tissue
inhibitors of metalloproteinases) play a key role in matrix
degradation and turn over, and these have been extensively
reviewed [86].

Recently the turnover of matrix hyaluronan has been
implicated in the pathogenesis of ALI. In non-injured
lungs this large glycosaminoglycan molecule exists in
a high molecular weight conformation. Accumulation
of low-molecular weight species occurs following tissue
injury and inflammation. Clearance of hyaluronans from
extracellular fluids occurs through macrophage scav-
enger receptors CD44. Recently Jiang et al. [87] found
that Toll-like receptors 2 and 4—chief innate immune
receptors in the response to Gram-negative and Gram-
positive bacteria—may act in concert to either promote
inflammation when bound to the low molecular weight
form of hyaluronan or prevent apoptosis and attenuate
lung injury when bound to the high molecular weight
form of the molecule. In a bleomycin model of ALI,
animals deficient in either Toll-like receptor 2 or 4 (double
knock outs) or MyD88 developed increased interstitial
thickening in lung tissues and protein accumulation
in BAL fluid in response to injury, despite decreased
neutrophil infiltration. Lung epithelial cell specific over
expression of high molecular mass hyaluronan was found
to be protective against ALI and alveolar epithelial cells
apoptosis; in fact, over-expression of the enzyme respon-
sible for the synthesis of the high-molecular weight form
of this molecule results in decreased apoptosis. More-
over, blocking of binding to low-molecular hyaluronan



627

resulted in decreased apoptosis, suggesting that signalling
through the low molecular weight form of this molecule
is pro-injurious [87]. This finding fits well with the
current hypothesis that apoptosis early in the course of
ALI is an important tissue survival mechanism where
apoptosis prevents necrosis, thus preserving the scaffold
for subsequent cell growth [22]. In addition, the synthesis
of low molecular weight hyaluronan is dependent upon the
activity of hyaluronan synthase 3 (Has3). Mice deficient in
the latter are partially protected from injurious mechanical
ventilation, suggesting a key role for this hyaluronan
signalling pathways involving ventilator induced lung
injury and matrix deposition and turnover [88].

The renin angiotensin system in lung remodelling

ANG II, generated by activation of local renin-angiotensin
systems, has recently gained much attention as an impor-
tant mediator in tissue repair and remodelling, in part via
a TGF-β mediated mechanism. Angiotensin-converting
enzyme (ACE) levels have been shown to be elevated in
the BAL fluid and/or serum in many potentially fibrotic
lung diseases including ARDS [89]. Mutations in this
gene are associated with the development of and outcome
from ARDS, suggesting a pathogenic role for the renin
angiotensin system in ALI [90]. ACE inhibitors attenuate
endothelial activation [91] and collagen deposition [92]
during experimental lung injury, possibly via a reduction
in epithelial cell apoptosis [93]. Moreover, ANG II could
influence the progression of lung injury via a number of
mechanisms. Evidence suggests that this protein acts as
a pro-apoptotic factor for alveolar epithelial cells in vitro
via the AT1 receptor [94]. ANG II is mitogenic for human
lung fibroblasts via activation of the AT1 receptor [95],
implicating ANG II in the fibroproliferative response to
lung injury. In vascular smooth muscle cells the cellular
actions of ANG II have been linked to the autocrine
release of growth factors, such as platelet-derived growth
factor, fibroblast growth factor, and TGF-β [96].

More recently Marshall and colleagues [95] have
unambiguously implicated ANG II in the fibroprolifera-
tive response to lung injury. In vitro ANG II is a potent
stimulator of lung fibroblast collagen production via the
AT1 receptor, and this appears to be in part mediated by
TGF-β. After bleomycin-induced lung injury increased
ANG II concentrations preceded a doubling of lung
collagen. While lung ACE activity remained unchanged,
administration of an ACE inhibitor attenuated lung ACE
activity, ANG II concentrations and collagen deposition.
Treatment with an AT1 receptor antagonist also reduced
lung collagen deposition and increased ANG II levels.
Together these data support the hypothesis that ANG II,
possibly generated within the lung during acute injury,
contributes directly to lung collagen deposition via fibrob-
last activation. However, the efficacy of ACE inhibition in
this model may also involve actions unrelated to ANG II
generation [97].

Conclusions
Factors and circumstances that determine whether areas
of the lung heal with minimal injury or progress to
irreversible fibrosis need to be defined and may indeed
lead to the development of novel therapeutic approaches
to the management of ARDS. Traditionally, processes
of repair and remodelling were thought of as late events
in the course of ARDS. A key point highlighted in this
review is that fibroproliferation in ARDS does not occur
in sequence, or in parallel with inflammation, but is the
summation of various intertwined processes that likely
begin immediately after the onset of injury and may be
injury specific. Moreover, this is not only affected by
an internal hierarchy of interactions but is modulated by
genetic and environmental factors, thus setting the stage
for potential early chemotherapeutic modulation in the
future.
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