Gastrointestinal Bleeding in Recipients of Left Ventricular Assist Devices

Michael A. Grasso, MD, PhD
Senior Talk
October 29, 2007
Case Report

- 60y male w/ ICM s/p CABG and AICD
 - No prior h/o GIB
 - Presented with heart failure

- Admitted to the CCU
 - Failed medical management
 - A nonpulsatile LVAD was implanted

- Refractory GIB developed
 - POD 6, 17, 18, 44, 58, 62, 90

- GIB resolved after cardiac transplantation [4]
Heart Failure

- A condition in which the heart can't pump enough blood to keep up with demand [1]
- Affects roughly 5 million people in the U.S.
- Approximately 1 million hospital admissions per year
- Roughly 300,000 deaths per year
Etiology & Medical Treatment

Coronary artery disease accounts for 2/3's of the cases of heart failure

- Other causes include hypertension, diabetes, valvular disease, arrhythmias, infection, thyroid disease, infiltrative disease

Traditional therapy

- Stage A: ACE-I, Statin
- Stage B: Add Beta blockers
- Stage C: Add Diuretics, Digoxin, Hydralazine/Imdur
- Stage D: Add IV Inotrops
Ventricular Assist Devices (VAD)

- For end-stage heart failure refractory to medical management

- Mechanical pumps
 - Provide circulatory support
 - Take over the function of the damaged ventricle

- Indications
 - Bridge to cardiac transplant
 - Bridge to myocardial recovery
 - Destination therapy
VAD Technical Variations

- **Location**
 - Paracorporeal
 - Intracorporeal

- **Support**
 - Left ventricle (LVAD)
 - Right ventricle (RVAD)
 - Both ventricles (BiVAD)

- **Flow mechanism**
 - Pulsatile
 - Nonpulsatile
VAD Mechanisms of Flow

- **Pulsatile**
 - Displacement mechanism
 - Pump a discrete volume at regular intervals

- **Nonpulsatile**
 - Rotor or axial mechanism
 - Continuous flow
Nonpulsatile VAD Characteristics

- Advantages [2]
 - Compact design
 - Mechanical simplicity

- Concerns about pulseless circulation
 - Adequate perfusion
 - Gastrointestinal bleeding (case study)
Arteriovenous Malformations (AVMs)

- Also known as angiodysplasias and vascular ectasias
- Frequently found in the gastrointestinal tract
 - Most common gastrointestinal vascular malformation
 - 1% estimated prevalence
 - May also appear elsewhere
- Most lesions clinically silent
 - Minority cause bleeding
AVM Characteristics

- **Vascular Malformations**
 - Dilated, tortuous, thin-walled vessels
 - Located in the mucosa and submucosa
 - Lined by endothelium
 - Little or no smooth muscle

- **Appearance during endoscopy**
 - Cherry red, 5 to 10 mm, fern-like pattern
 - Associated with synchronous lesions 20% of the time
 - The colon is the most common site
AVM Pathogenesis

- Mechanism not well understood [3]
 - Venous obstruction or hypoperfusion
 - Venous dilation
 - Propagates proximally to capillary bed
 - Precapillary sphincter becomes incompetent
 - Results in an arteriovenous communication
GI AVM Associations

- Age
- Chronic kidney disease
 - Platelet dysfunction, vascular overload
- Von Willebrand disease
 - Platelet dysfunction
- Aortic stenosis (± von Willebrand)
 - Low pulse pressure (Heyde syndrome) [5]
 - Damage to VWB factors passing through AV
- Scleroderma, portal HTN, & Turner syndrome
Summary

- **Case Study**
 - Refractory GIB in nonpulsatile LVAD recipients

- **Background**
 - Heart failure, VADs, and AVMs

- **Hypothesis suggest by Letsou et al. [4]**
 - Empiric observation in 3 of 21 patients
 - Nonpulsatile ventricular assist devices may contribute to GI bleeding from AVMs
 - Nonpulsatile → low pulse pressure → AVM formation
 - Similar to the Heyde syndrome [5]
Study Methods

- Retrospective analysis of 53 consecutive intracorporeal LVAD recipients
 - Nonpulsatile: VentrAssist, HeartMate II, & Jarvik 2000
 - Pulsatile: Novacor and HeartMate XVE
 - Excluded 1 patient who died within 4 hours of implantation

- The primary endpoint was clinically evident GI bleeding, confirmed by endoscopy

- Analyzed data by odds ratio, Fischer's exact test, logistic regression, and the t test
Results: Baseline Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Nonpulsatile (n=25)</th>
<th>Pulsatile (n=27)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implant age in years</td>
<td>52 ±15</td>
<td>54 ±16</td>
<td>0.495</td>
</tr>
<tr>
<td>Male</td>
<td>16 (64%)</td>
<td>19 (70%)</td>
<td>0.633</td>
</tr>
<tr>
<td>Caucasian</td>
<td>16 (64%)</td>
<td>17 (63%)</td>
<td>0.843</td>
</tr>
<tr>
<td>Pre-implant screening colonoscopy</td>
<td>6 (24%)</td>
<td>4 (15%)</td>
<td>0.411</td>
</tr>
<tr>
<td>Days on device</td>
<td>112 ±119</td>
<td>254 ±251</td>
<td>0.013</td>
</tr>
<tr>
<td>Ischemic cardiomyopathy</td>
<td>9 (36%)</td>
<td>13 (48%)</td>
<td>0.386</td>
</tr>
<tr>
<td>Aortic stenosis (AV ≤ 1.5 cm²)</td>
<td>1 (4%)</td>
<td>1 (4%)</td>
<td>0.957</td>
</tr>
<tr>
<td>Chronic kidney disease (Cr ≥ 1.5 mg/dl)</td>
<td>9 (36%)</td>
<td>6 (22%)</td>
<td>0.248</td>
</tr>
</tbody>
</table>
Results: Post-LVAD GI Bleeding

<table>
<thead>
<tr>
<th></th>
<th>Nonpulsatile (n=25)</th>
<th>Pulsatile (n=27)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>GI bleeding from AVM</td>
<td>1 (4%)</td>
<td>2 (7%)</td>
<td>0.607</td>
</tr>
<tr>
<td>All GI bleeding</td>
<td>2 (8%)</td>
<td>6 (22%)</td>
<td>0.162</td>
</tr>
</tbody>
</table>
Results: Pre-Implant Colonoscopy

- The 10 subjects received pre-implant colonoscopies
 - Cancer screening for patients over 50
 - 7 had pathologic findings
 - 4 polyps
 - 2 diverticulosis
 - 1 colitis
 - 3 went on to develop post-implant GI bleeding
 - No association ($p = 1.000$)
Discussion

- Letsou et al. suggested an association between nonpulsatile LVADs and GI AVMs [4]
 - We found no statistical association between nonpulsatile LVADs and AVMs [7]
 - Ironically found more bleeding in the pulsatile group, but this was not statistically significant

- Only age was found to be an independent predictor of GI bleeding (p = 0.001)
Study Limitations (Both Studies)

- Did not consider residual ejection fractions
 - Device recipients may still have pulsatile aortic pressures if their ventricles remain ejecting

- Only considered clinically evident AVMs
 - Hematemesis, hematochezia, melena, guaiac positive stools, iron deficiency anemia

- Did not control for confounding factors
 - CKD, VWD, AS, portal HTN, etc.

- Small, retrospective
Discussion, Continued

- Colorectal disease in transplant recipients [6]
 - Anticoagulation and immunosuppression
 - Increased rate of gastrointestinal malignancy, infection, and bleeding

- Screening colonoscopies did not help predict those who would develop GI AVMs
 - May want to expand screening to patients with...
 - Prior bleeding events
 - Coagulopathy
 - Chronic kidney disease
 - Liver disease
 - Unexplained anemia
 - Aortic stenosis
 - Gastrointestinal disease
 - Connective disease
Conclusions

- Nonpulsatile LVADs were not associated with an increase in GI AVMs or GI bleeding

- The limited number of pre-implant colonoscopies was not predictive of post-implant GI bleeding

Take-home points
- Nonpulsatile LVADs are safe to use (w/ respect to risk of GI bleeding)
- May want to expand endoscopic screening criteria for transplant candidates
Acknowledgements

- Erika D. Feller, MD
- Erik N. Sorensen, PhD
- Jonathan M. Fenkel, MD
- Eric M. Goldberg, MD
References

