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Inherent risks and increasing costs of allogeneic transfusions underline the socioeconomic rel-
evance of safe and effective alternatives to banked blood. The safety limits of a restrictive trans-
fusion policy are given by a patient’s individual tolerance of acute normovolaemic anaemia.
Iatrogenic attempts to increase tolerance of anaemia are helpful in avoiding premature blood
transfusions while at the same time maintaining adequate tissue oxygenation. Autologous trans-
fusion techniques include preoperative autologous blood donation (PAD), acute normovolaemic
haemodilution (ANH), and intraoperative cell salvage (ICS). The efficacy of PAD and ANH can
be augmented by supplemental iron and/or erythropoietin. PAD is only cost-effective when
based on a meticulous donation/transfusion plan calculated for the individual patient, and still
carries the risk of mistransfusion (clerical error). In contrast, ANH has almost no risks and is
more cost-effective. A significant reduction in allogeneic blood transfusions can also be achieved
by ICS. Currently, some controversy regarding contraindications of ICS needs to be resolved.
Artificial oxygen carriers based on perfluorocarbon (PFC) or haemoglobin (haemoglobin-based
oxygen carriers, HBOCs) are attractive alternatives to allogeneic red blood cells. Nevertheless,
to date no artificial oxygen carrier is available for routine clinical use, and further studies are
needed to show the safety and efficacy of these substances.
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Although safer than ever before, the transfusion of allogeneic blood is still associated
with risks for the recipient (cf. Table 1), the most serious of which are allergic re-
actions, transfusion-related lung-injury (TRALI), accidental mistransfusions (‘clerical
error’), and the transmission of viral and bacterial infections (hepatitis, HIV, cytomeg
alovirus, Epstein–Barr virus).1,2 Indeed, the results of several prospective clinical stud-
ies indicate that a restrictive transfusion regimen is associated with lower morbidity
and mortality than a liberal transfusion policy.3–7

Moreover, public health systems are facing a cost explosion resulting from transfu-
sion-related morbidity as well as from continuously rising costs of the blood products
themselves; because of the growing imbalance between the decreasing rate of blood
donation and the continuously increasing demand, the costs of blood products are
expected to double until 2030.8,9

To control both the inherent risks as well as the increasing costs, allogeneic blood
transfusions should be either completely avoided or at least reduced to an absolute
minimum during surgical procedures.

This chapter reviews the following topics in connection with alternatives to alloge-
neic blood transfusions: (1) the tolerance of acute normovolaemic anaemia, including
the acceptance of low intraoperative haemoglobin (Hb) concentrations; (2) the
employment of autologous transfusion techniques, including supportive administration
of erythropoietin; and (3) the potential of artificial oxygen carriers as substitutes for
allogeneic red blood cells (RBCs).

TOLERANCE OF ACUTE NORMOVOLAEMIC ANAEMIA

The initial treatment of intraoperative blood loss always consists in the maintenance of
normovolaemia by the infusion of crystalloid (3:1) and colloidal solutions (1:1). This
acellular fluid replacement implies the dilution of the cell mass remaining in the vascula-
ture (haemodilution), resulting in a dilutional anaemia (acute normovolaemic anaemia).

Table 1. Incidences of potential risks associated with allogeneic blood transfusions.

Risk factor Incidence

Mistransfusion Acute haemolytic reaction 1:6000e1:33,000

Delayed haemolytic reaction 1:2000e1:11,000

Infections (viral) HIV 1:20 million

Hepatitis A 1:1 million

Hepatitis B 1:63,000e1:320,000

Hepatitis C 1:1.2e1:11 million

Cytomegalovirus (CMV) 1:10e1:30

EpsteineBarr virus (EBV) 1:200

Infections (Bacterial) Yersinia enterocolica,

Serratia marcescens, Pseudomonas,

enterobacteria

1:200,000e1:4.8 million

Immunological Transfusion-related lung injury (TRALI) 1:4000

Alloimmunization 1:16,000

Immunosuppression 1:1

Allergic transfusion reaction 1:2000
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In the context of alternatives to allogeneic blood transfusion, the term ‘anaemia tol-
erance’ is used to refer to the patient’s physiological ability to tolerate acute normovo-
laemic anaemia as well as the anaesthesiologist’s intention to accept low haemoglobin
concentrations. Hence, the omission of any avoidable transfusion represents the sim-
plest but also the most important alternative to allogeneic blood transfusion. Indeed,
the acceptance of low haemoglobin values offers two incentives: (1) the more diluted
the patient – i.e. the lower the intravascular haemoglobin concentration – the less the
red cell mass lost/mL blood loss (Figure 1); and (2) postponing the transfusion until after
surgical haemostasis has been achieved increases the percentage of transfused red
blood cells which remain within the vasculature rather than being spilled out with un-
controlled blood loss.

Compensatory mechanisms of dilutional anaemia

Regardless of the fact that arterial oxygen content (CaO2) decreases proportionally
with haematocrit (Hct), it has been known for a long time that normal oxygen supply
and tissue oxygenation do not depend on a normal haemoglobin concentration, always
presuming that normovolaemia is maintained.10,11

Initially, dilutional anaemia is essentially compensated by an increase in cardiac out-
put (CO), which at first is caused exclusively by an increase in left ventricular stroke
volume. In more profound stages of normovolaemic anaemia, this is accompanied by
an increase in heart rate (HR). Oxygen delivery to the tissues (DO2) begins to
decrease beyond baseline level at Hct values lower than w25%, so that haemodilution

Figure 1. Extent of normovolaemic exchange of blood for acellular fluids necessary to decrease haemoglobin

by 1 g/dL, exemplarily calculated for a man (body weight 80 kg, height 1.8 m, blood volume 6000 mL). X-axis:

stepwise decrease in haemoglobin concentration by 1 g/dL. Y-axis: blood loss necessary to realize the respec-

tive drop in haemoglobin by maintenance of normovolaemia with cell-free solutions during acute blood loss.

The lower the starting haemoglobin, the greater the blood loss necessary to decrease the haemoglobin

concentration by 1 g/dL.
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to Hct w25% (corresponding to a haemoglobin concentration of w8 g/dL) occurs
without a net decrease in DO2.

At Hct values below w25%, the compensation for dilutional anaemia via CO
increase becomes exhausted, and DO2 starts to fall below the baseline level. To main
tain tissue oxygen demand – as reflected by total body oxygen consumption (VO2) –
the decreasing DO2 is further compensated by: (1) utilization of ‘luxury DO2’ (under
normal conditions, DO2 exceeds VO2 by a factor of 3–4); (2) a haemodilution-related
increase in nutritive organ blood flow; (3) homogenization of local DO2; and (4) an
increase in tissue oxygen extraction.12 Therefore, VO2 initially remains unchanged de-
spite falling DO2 (oxygen-supply-independency of VO2, see Figure 2a).

Figure 2. The relationship between oxygen consumption (VO2) and oxygen delivery (DO2). Physiologically,

DO2 is three or four times higher than VO2. (a) Over a long period, VO2 remains independent of DO2

despite the anaemia-related decrease of DO2 (oxygen-supply-independency of DO2). (b) When a critical

haemoglobin concentration (Hbcrit) is reached, DO2 falls short of the actual oxygen demand and VO2 begins

to decrease (onset of oxygen-supply-dependency of VO2).
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Limits of dilutional anaemia – the concept of critical Hct

At extreme degrees of dilutional anaemia, DO2 falls below a critical value (DO2crit).
The amount of oxygen delivered to the tissues becomes insufficient to meet their ox-
ygen demand, and VO2 starts to decline (oxygen-supply-dependency of VO2, cf.
Figure 2b).13 This indirectly indicates the onset of tissue hypoxia. The haemoglobin
value that corresponds to the inflection of VO2 is called ‘critical haemoglobin’ (Hbcrit)
and reflects the physiological limit of dilutional anaemia. In a standardized experimental
protocol, it could be demonstrated that the persistence of DO2crit without any treat-
ment finally leads to death in less than 3 hours.14

Both DO2crit and Hbcrit vary within and between individuals and are influenced by
different physiological circumstances (see below). In previous experimental studies,
Hbcrit values between 2 and 3 g/dL were found. In clinical observations in anaesthe-
tized patients, extremely low haemoglobin concentrations (3.0� 0.8 g/dL in children
undergoing major spine surgery15 and 1.1 g/dL in an unexpected massive blood
loss16) have been tolerated without meeting the DO2crit (Table 2).

Table 2. Physiological limits of acute normovolaemic anaemia in different species.

Author Species Anaesthesia FiO2 Plasma

substitute

Identification

of Hbcrit

Hbcrit

(g/dL)

Fontana et al15 Man

(child)

Isoflurane 1.0 Albumin Decay of VO2 2.1

Sufentanil

Vecuronium

Van Woerkens et al99 Man

(84 years)

Enflurane 0.4 Gelatin Decay of VO2 4

Fentanyl

Pancuronium

Zollinger et al16 Man

(58 years)

Propofol 1.0 Gelatin ST-segment

depression

w1.1

Fentanyl

Pancuronium

Cain et al13 Dog Pentobarbital 0.21 Dextran Decay of VO2 3.3

Meier et al14 Pig Propofol 0.21 HES Decay of VO2 3.1� 0.4

Fentanyl

Pape et al24 Pig Propofol 0.6 HES Decay of VO2 1.5� 0.4

Fentanyl

Midazolam

Pancuronium

Kemming et al100 Pig Midazolam 0.21 HES ST-segment

depression

2.6� 0.3

Morphine

Pancuronium

Meisner et al101 Pig Diazepam 0.21 Albumin ST-segment

depression

2.0� 0.8

Morphine

Pancuronium

Meier et al

(unpublished data)

Pig Propofol 0.21 HES Decay of VO2 2.6� 0.4

Fentanyl

Pancuronium

Hbcrit, critical haemoglobin level; HES, hydroxyethyl starch.
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These data demonstrate that the tolerance of acute normovolaemic anaemia is high
in anaesthetized subjects. However, the presented concept of DO2crit refers to a crit-
ical limitation of total body oxygen supply. The limiting factor of anaemia toler
ance is the oxygenation of the myocardium as the motor of haemodynamic compen-
sation: when DO2crit is reached, a deterioration in myocardial performance represents
imminent breakdown of total body oxygenation.

Since myocardial oxygen extraction is already maximal under rest conditions,
increased myocardial oxygen demands can only be met by utilization of the coronary
flow reserve.17 In contrast, other vitally important organs (i.e. brain, intestine, kidneys)
can increase oxygen extraction to compensate for acute anaemia.18 However, what
degree of dilutional anaemia may result in a critical limitation of oxygen delivery to
these organs has not yet been completely elucidated. Further research is necessary
to identify organ-specific limits of anaemia tolerance.

Factors influencing anaemia tolerance

DO2crit and Hctcrit are influenced by a couple of physiological variables. The basic
requirement for the efficacious compensation of dilutional anaemia is normovolaemia.
During hypovolaemic haemodilution the total body oxygen demand increases due to
the release of catecholamines and other stress hormones, and the ‘critical’ oxygen
delivery (DO2 crit) is met at higher values than under normovolaemia. Myocardial per-
formance is another variable that determines anaemia tolerance. During haemody-
namic compensation of dilutional anaemia, increased myocardial oxygen demand is
met by a coronary vasodilation and an increase in coronary blood flow (coronary
flow reserve, see above). In patients with restricted coronary reserve (e.g. coronary
artery disease), limited ventricular performance (e.g. congestive heart failure) and
cardiodepressive medication, anaemia tolerance is reduced.19

Anaemia tolerance is also influenced by the depth of anaesthesia and muscular
relaxation. In high doses most of the anaesthetics attenuate the cardiac output
response during haemodilution and thus reduce anaemia tolerance.20 In contrast, neu-
romuscular blockade increases anaemia tolerance, since skeletal muscle mass repre-
sents about 30% of total body mass, so that reduction in muscular oxygen demand
significantly decreases total body oxygen consumption.21 In an experimental study in
anaesthetized pigs, deep neuromuscular block using rocuronium significantly increased
anaemia tolerance (Hbcrit 2.4� 0.5 g/dL versus 3.2� 0.7 g/dL in animals without relax-
ation; personal unpublished data).

Moreover, body temperature modulates anaemia tolerance. In experimental
models mild hypothermia has been shown to increase anaemia tolerance due to a
reduction in total body oxygen demand.22 The opposite should be postulated for
hyperthermia.

Finally, anaemia tolerance can also be increased by ventilation with high inspiratory
oxygen fraction (FiO2, hyperoxic ventilation). The amount of oxygen physically
dissolved in the plasma increases proportionally with arterial partial pressure of oxy-
gen (paO2). In profound anaemia, the plasma compartment is significantly increased
and becomes an important source of oxygen.23 In experimental studies, the positive
effect of hyperoxic ventilation on anaemia tolerance has been demonstrated repeat-
edly (Table 3).14,24–26

The omission of any avoidable transfusion is the most important alternative to the
application of allogeneic blood. In the best case, permissive anaemia can be sustained
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until surgical bleeding is under control27, which may allow saving of blood products
which would get lost immediately after transfusion via the ongoing bleeding. The pa-
tient’s individual tolerance towards acute normovolaemic anaemia reflects the mar
gin of safety, in between which any restrictive transfusion policy will not be associated
with an increased the risk of tissue hypoxia. Both the optimization of anaemia toler-
ance and the choice of an adequate transfusion trigger (cf. Chapter 2 by B. Vallet) en-
able the implementation of a safe and effective blood-sparing strategy.

AUTOLOGOUS TRANSFUSION TECHNIQUES

Autologous transfusion techniques are generally intended to replace as many alloge-
neic RBC transfusions as possible by (re)transfusion of autologous blood. Autologous
blood is either harvested a couple of weeks before (preoperative blood donation,
PAD) or immediately before surgery (acute normovolaemic haemodilution, ANH).
The concept of intraoperative cell salvage (ICS) implies the collection and reprocessing
of shed blood for autologous retransfusion.

Preoperative autologous blood donation (PAD)

In the course of PAD, autologous whole blood is collected weekly within 4–6 weeks
prior to surgery. The final donation must not be performed later than 72 hours before
surgery.28 Whole blood units are separated into red blood cells and plasma, and sub-
sequently classified according to the ABO and rhesus systems and clearly allocated to
the donor.

Usually, PAD is suitable when a blood loss of 500–1000 mL is anticipated in at least
5–10% of the cases, or when the estimated transfusion probability exceeds 50%,
respectively. The minimum acceptable haemoglobin concentration for PAD is 11 g/
dL.28 In the presence of lower preoperative haemoglobin levels the supportive admin-
istration of iron and/or recombinant erythropoietin (rhEPO) may encourage PAD
anyway (see below).

PAD is contraindicated in patients with elevated cardiac risk, i.e., patients with
unstable angina, myocardial infarction within the previous 3 months, coronary artery

Table 3. Factors influencing anaemia tolerance.

Factor Effect on anaemia tolerance

Hypovolaemia Y
Coronary arterial stenosis Y
Hyperoxaemia [
Muscular relaxation [
Hypothermia [
Depth of anaesthesia Y
Choice of infusion fluid 4
Hypoxaemia 4
Sepsis Y
Polytrauma Y
Pregnancy 4
Chronic anaemia 4
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main stem stenosis, congestive heart failure, and significant aortic valve stenosis
(gradient >70 mmHg).29

The adequate number of PAD units has to be calculated prospectively for each
individual case, the type of surgery, the probability of a transfusion requirement, and
the time left until the date of surgery being taken into consideration. A helpful tool
may be the maximum surgical blood ordering schedule (MSBOS), which is based on
a specific institutional analysis of the mean number of blood units transfused per
type of surgical intervention and individual surgeon.30,31

The cost-efficacy of PAD decreases with the number of blood units discarded11,
which underlines the necessity to exactly calculate the individual number of blood dona-
tions.32 Indeed, PAD is not cost-effective if only one unit of allogeneic blood must be
transfused despite previous PAD, or if more than 15% of donated blood is discarded.33

Major risks associated with PAD consist in contamination during storage and – as in
the transfusion of allogeneic blood – in the potential clerical error with consecutive
mistransfusion.34

Whereas the blood-sparing potential of PAD had been documented in some pre-
vious studies29, a recent meta-analysis indicates that PAD is actually associated with
a higher overall transfusion rate.35 Overall it can be assumed that other blood-conser-
vation techniques will increasingly replace PAD in elective surgical procedures.

Acute normovolaemic haemodilution (ANH)

ANH entails the isovolumic exchange of whole blood for acellular fluids (colloids and/
or crystalloids) directly prior to surgery.36 Usually, 3–4 units of blood are withdrawn
and are stored at the bedside in the operating room. In terms of the safe application of
ANH, it is essential to know the physiological changes that occur during dilutional
anaemia (see above), and to evaluate the patient’s individual anaemia tolerance (i.e.
the lowest, safely tolerable haemoglobin level).37 The benefit of ANH consists in a -
reduction of net RBC loss related to dilutional anaemia (see above) and the availability
of fresh whole blood, including coagulatory factors and platelets, for autologous
retransfusion.

The blood-sparing efficacy of ANH depends on the baseline haemoglobin level, the
target haemoglobin after ANH, and the dimension of blood loss measured as a fraction
of circulating blood volume.38 ANH should therefore target as low a haemoglobin con-
centration as possible while still leaving an adequate margin of safety for tissue oxygen-
ation (i.e. haemoglobin 6–7 g/dL in otherwise healthy patients and 9–10 6–7 g/dL in
patients with cardiovascular comorbidity).

While the efficacy of ANH in reducing perioperative allogeneic transfusion could be
demonstrated in several clinical trials (abdominal, vascular, orthopaedic, urological and
maxillofacial surgery)39–43, the same effect could not be confirmed in some meta-anal-
yses.44,45 However, the heterogeneity of transfusion managements between different
institutions (e.g. choice of transfusion triggers) complicates the comparability of the
different patient populations.

ANH is contraindicated with unstable angina, coronary artery disease with signifi-
cant main-stem stenosis or myocardial infarction within the past 6 months, high-grade
aortic valve and carotid artery stenosis, renal insufficiency, and manifest bacteraemia,
but not with malignant disease.

All in all, ANH should be preferred to PAD, since: (1) ANH is less expensive than
PAD ($28 versus $226 per unit)46 because travel expenses, costs for staff, material,
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and processing and testing devices can be omitted; and (2) the performance of ANH
allows for a more flexible scheduling of the date of surgery since the complex logistics
necessary for PAD can be omitted. As a blood conservation method, ANH has been
readopted in the practice guideline for perioperative blood transfusion of the Amer-
ican Society of Anesthesiologists (ASA).47

Supportive administration of iron and/or recombinant human
erythropoietin (rhEPO)

During the perioperative phase, iron and/or rhEPO are administered either alone48 or
in combination with PAD and/or ANH11, both allowing for the implementation of a
restrictive transfusion protocol. In particular, anaemic patients seem to benefit from
preoperative substitution of iron48, whereas in non-anaemic patients undergoing
orthopaedic surgery the isolated administration of iron did not decrease the perioper-
ative transfusion rate.49 In combination with PAD, the substitution of iron (e.g. 100–
200 mg/day orally) is recommended anyway for treatment of PAD-related anaemia.29

The administration of rhEPO (e.g. 100–150 U/kg subcutaneously twice a week)
should always be accompanied by iron substitution in order to achieve an effective stim-
ulation of erythropoesis.50 In these low dosages, the costs of rhEPO are comparable
with those of allogeneic blood.51 The augmentation of haematopoiesis alone
has already been proven to reduce allogeneic blood transfusions, since a low preoper-
ative haemoglobin level is a relevant predictor of allogeneic RBC transfusion.11 More-
over, an increase in preoperative haemoglobin levels using rhEPO also increases the
efficacy of ANH by allowing for a more extensive exchange of blood for acellular fluids.

Intraoperative cell salvage (ICS)

In surgical interventions with a blood loss of at least 800–1000 mL, autotransfusion of
RBCs salvaged from shed blood is a highly effective method for reducing allogeneic
blood transfusions. Basically, shed blood is aspirated via a heparinized suction tube
into a collection reservoir. Erythrocytes are salvaged by differential centrifugation
and washing in 0.9% saline, while contaminants such as fibrin, cell debris, microaggre-
gates, bone fragments, fat, haemoglobin and heparin are eliminated. Depending on the
washing program, the haematocrit of the autologous RBC concentrate is 55–80%.52

The quality of salvaged blood is excellent compared with stored pRBCs; fresh salvaged
blood has a lower oxygen affinity related to a more physiological pH and a higher con-
tent of ATP and 2,3-diphosphoglycerate (2,3-DPG). However, an extensive list of con-
traindications to ICS is traditionally proposed by the manufacturers of ICS devices
(Table 4).

To a certain extent, these contraindications have been challenged by recent litera-
ture. Only the potential bacterial contamination of collected wound blood represents
an absolute contraindication for autotransfusion in patients undergoing replacement
surgery (i.e., implantation of vascular grafts or joint prostheses, cardiac valve
replacement).33

In the case of definite contamination of shed blood with bacteria or malignant cells,
some authors advocate the use of PAL leukocyte-depleting filters in addition to the cen-
trifugation and washing process of the cell saver.53 A recent study performed in a South
African trauma centre even suggests that ICS without PAL filters in 44 patients with
penetrating abdominal trauma significantly reduced the need for allogeneic blood
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transfusions. These patients received prophylactic antibiotics, and no differences to the
control group were apparent regarding the incidence of sepsis or overall mortality.54

As a highly effective method for completely eliminating contaminating tumour cells,
Hansen and co-workers propose the irradiation of RBC concentrates salvaged from
operating fields in cancer surgery.55 Moreover, irradiation of salvaged blood has
been demonstrated to mitigate the release of inflammatory mediators, which may pro-
vide an additional advantage when compared with allogeneic blood.56

Even in obstetric surgery, ICS seems possible when combined with PAL leukocyte
filters.57 A current investigation demonstrated that these filters effectively removed
squamous cells and other amniotic contaminants from washed blood salvaged during
caesarean deliveries.58 However, in the setting of a massive blood loss, the efficacy of
this procedure seems questionable, since the filter interposed into the transfusion line
increases the resistance of the system, resulting in a substantial reduction in transfu-
sion velocity.

In any case, it must be borne in mind that any use of cell salvage, despite the stip-
ulated contraindications, represents off-label use from the medico-legal point of view,
and has to be based on a thorough analysis of the individual risk/benefit ratio. Further
systematic research is necessary to elucidate important safety aspects of these appli-
cation modalities.

The blood-sparing potential of ICS has been proven in several clinical trials and meta-
analyses.11,35,59 ICS is also accepted by Jehovah’s Witnesses as long as the patient,
collection system, processing unit and final blood bag form a closed circuit.60

ARTIFICIAL OXYGEN CARRIERS

An attractive alternative to allogeneic RBCs consists in synthetic blood substitutes
(artificial oxygen carriers), which can be applied independently of blood-group typing
or infectious risks. Currently, there are two types of artificial oxygen carrier under
experimental and clinical investigation: (1) synthetically manufactured perfluorocar

Table 4. Proposed contraindications to intraoperative cell salvage.

Pharmacological agents Clotting agents

Irrigating solutions meant for topical use

Methylmethacrylate

Contaminants Urine

Bone chips

Fat

Bowel contents

Infection

Amniotic fluid

Malignancy

Haematological disorders Sickle-cell disease

Thalassaemia

Miscellaneous Carbon monoxide (electrocautery smoke)

Catecholamines (phaeochromocytoma)

Oxymetazoline

From Waters (2004, Transfusion 44: 40S–44S) with permission.
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bons (PFC), and (2) haemoglobin-based oxygen carriers (HBOCs), i.e., solutions based
on isolated human or bovine haemoglobin.61

Perfluorocarbons (PFCs)

PFCs are simply constructed molecules (MW 450–500 D) derived from cyclic or
straight-chain hydrocarbons with hydrogen atoms replaced by halogens (i.e. fluorine
or bromide). PFCs are chemically and biologically inert; they are insoluble in water
and therefore have to be emulsified for intravenous application. Oxygen kinetics of
PFCs are characterized by a linear relationship between partial pressure of arterial
oxygen and oxygen content; therefore high partial pressures of arterial oxygen are
required to maximize the amount of oxygen transported by the PFC (Figure 3).62

Oxygen release from PFC to the tissues is almost complete in the presence of
a high pO2 gradient between arterial blood and the tissues (cf. Figure 3). At a given
pO2 gradient of 560 mmHg (arterial blood 600 mmHg, tissue 40 mmHg), 100 g of
a 60% (w/v) PFC emulsion (e.g. perfluorooctylbromide, Oxygent�, Alliance Corp.,
San Diego, CA, USA) release 15 mL oxygen.63 The same amount of oxygen is provided
by 450 mL of whole blood with a haemoglobin concentration of 14 g/dL. Additionally,
PFCs enhance tissue oxygenation by lowering the diffusion barrier between erythro-
cytes and the plasma (‘facilitated diffusion’).61

After intravenous infusion, PFC emulsion droplets are rapidly taken up by the
reticuloendothelial system (RES). To avoid RES overload and consequent immunosup-
pression, the clinical application of PFC is restricted to low dosages (e.g. maximum
dose of 60% Oxygent�: 2.7 g/kg).

In elective surgery with anticipated substantial blood loss, a suitable application
mode of PFC is represented by the concept of augmented haemodilution
(A-ANH�, patented by Alliance Corp.): prior to surgery, autologous blood is har-
vested by ANH. During acellular fluid replacement of surgical blood loss, the combi-
nation of hyperoxic ventilation and repetitive co-administration of low boluses of PFC
maintains adequate tissue oxygenation despite further decrease of haemoglobin con-
centration. In the best case, retransfusion of autologous blood can be postponed until
bleeding is under control.64,65

Figure 3. Oxygen dissociation kinetics of native blood (sigmoidal) and a 60% (w/v) Oxygent� emulsion

(linear). At a given tissue pO2 of 40 mmHg, oxygen extraction from perfluorocarbon (PFC) is almost com-

plete, in contrast to that from blood (oxygen extraction rate 80–90% PFC versus 25% blood).63
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In splenectomized dogs, this concept allowed the extension of acute normovolae-
mic anaemia from Hct 21% to Hct 8% without any signs of impaired tissue oxygenation
or compromised myocardial contractility.25,66 In patients undergoing cardiac surgery,
the application of 2.7 g/kg Oxygent� provided adequate gastrointestinal tissue oxy-
genation at haemoglobin to 6.6� 0.4 g/dL.67 In non-cardiac surgical patients (ortho-
paedic and general surgery), the low-dose-bolus administration of 60% Oxygent�
(0.9, 1.8 or 2.7 g/dL) allowed the transfusion of allogeneic blood to be postponed
by 80 minutes.68

In a recent multicentre phase-III study, the number of pRBC units transfused until
postoperative day 3 was significantly lower in patients treated with PFC. However,
aside from typical mild side-effects of PFC (flu-like symptoms, primarily fever, chills,
headache, nausea and myalgia), an increased incidence of postoperative ileus has
been reported.69 Moreover, patient enrolment in a phase-III study in cardiac surgery
was suspended in 2001 due to an increased rate of neurological complications.62 Nev-
ertheless, the manufacturers are seeking to perform additional multicentre studies in
Europe and the USA before filing for market approval.

Haemoglobin-based oxygen carriers (HBOC)

Haemoglobin used for manufacturing HBOCs originates from outdated human red
cells or from bovine blood, or it is genetically engineered. Purified haemoglobin
molecules are chemically modified to increase their stability and to modulate oxygen
affinity. These chemical modifications include intramolecular cross-linking of a-sub-
units, polymerization of haemoglobin molecules using glutaraldehyde or o-raffinose,
conjugation of polyethylene glycol to the surface of the haemoglobin molecule, inser-
tion of 2,3-DPG analogues or embedding haemoglobin molecules into phospholipid
vesicles(Table 5).70

In contrast to PFCs, HBOCs feature sigmoidal oxygen kinetics. As indicated by high
p50 values, the oxygen affinity of most HBOCs is lower than that in native human
blood, facilitating the offloading of oxygen to the tissues.71 Moreover, extracellular
haemoglobin possesses strong vasoconstrictive properties, the underlying mechanisms
of which are: (1) scavenging of nitric oxide (‘NO scavenging’); (2) augmented release of
endothelin; and (3) stimulation of endothelin receptors and adrenoreceptors.72

Due to their oncotic properties, most HBOCs can be characterized as ‘oxygen-
transporting plasma expanders’ suitable for fluid resuscitation from haemorrhagic
shock as well as for the treatment of surgical blood loss.

During fluid resuscitation from haemorrhagic shock, hypovolaemia can be
treated effectively, while arterial oxygen content is maintained despite progressive
dilutional anaemia. Indeed, in experimental studies of severe hemorrhagic shock,
resuscitation with HBOCs consistently effected a sustained stabilization of the hae-
modynamics and tissue oxygenation and significantly decreased mortality.73–76

Moreover, the post-ischaemic interaction between leukocytes and the endothelium
could be attenuated by infusion of HBOCs based on human77,78 as well as bovine
haemoglobin.79

Surprisingly, the long-time favourite among the HBOCs, DCLHb, was abandoned in
1998 after an interim analysis of a trauma study performed in the USA. After enrol-
ment of 112 patients, the 24- and 48-hour mortality was significantly higher in patients
treated with DCLHb.80 Although severe deficiencies regarding design and perfor-
mance of the study (under-resuscitation and over-proportional enrolment of
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desperate cases in the DCLHb group), the study has been terminated prematurely and
has never been restarted.81

In contrast, PolyHeme� proved to be an effective resuscitation fluid when 171
patients suffering massive haemorrhage were treated with this HBOC. Compared
with a historical control group, 30-day mortality could be reduced significantly
(64.5% versus 25%).82 However, this report does not comment on potential side-
effects of PolyHeme�. Enrolment in another pre-hospital phase-III study has recently
been completed, and the first results are not expected before autumn 2006.

Aside from fluid resuscitation from haemorrhagic shock, HBOCs are also suitable
for the treatment of intraoperative blood loss. During isovolaemic replacement of lost
blood, the oxygen-transport properties of the HBOC allow for haemodilution to
a lower Hct than do crystalloid and colloid solutions. Hence, the transfusion of

Table 5. Physicochemical characteristics and actual state of clinical research on haemoglobin-based

oxygen carriers (HBOCs).

Source of

haemoglobin

Concentration

(g/dL)

MW (Da) P50

(mmHg)

Indication Phase of

clinical

testing

PHP� Human 8 123,000 23.6 Haemodynamic

instability

in septic shock

II/III

HemAssist� Human 10 65,000 32 Reduction of

perioperative

transfusion rate

Up to III,

stopped

r-Hb 1.1� Recombinant 5e10 64,000 31e32 Reduction of

perioperative

transfusion rate

I/II,

stopped

r.Hb 2.0� Recombinant 10 320,000 31e32 Reduction of

perioperative

transfusion rate

I/II,

stopped

Hemopure� Bovine 13 250,000 38 Reduction of

perioperative

transfusion rate

III

Polyheme� Human 10 150,000 26e32 Reduction

of perioperative

transfusion rate

III

Hemolink� Human 10 120e180,000 39 Reduction of

perioperative

transfusion rate

III,

discontinued

Hemospan� Human 4 95,000 6 Reduction of

perioperative

transfusion rate

II

PHP�, pyridoxylated, polyethylene-glycol conjugated haemoglobin (Curacyte Health Sciences, Munich,

Germany); HemAssist�, diaspirin cross-linked haemoglobin (DCLHb, Baxter Healthcare, Round Lake,

USA); r-Hb 1.1, recombinant haemoglobin, version 1.1 (Somatogen Inc., Boulder, USA, later Baxter

Healthcare); r-Hb 2.0, recombinant haemoglobin, version 2.0 (Baxter Healthcare); Hemopure�, poly-

merized bovine haemoglobin (HBOC 201, Biopure Corp., Cambridge, USA); Polyheme�, pyridoxylated,

glutaraldehyde-polymerized haemoglobin (Northfiled Lab. Inc., Evanston, USA); Hemolink�, haemoglo-

bin raffimer (Hemosol Inc., Toronto, Canada); Hemospan�, maleimide-activated polyethylene glycol-

modified haemoglobin (MP4, Sangart INC, San Diego, USA).
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allogeneic blood can be postponed until surgical bleeding is under control. HBOCs
have been tested in several clinical phase-III studies, including cardiac and non-cardiac
(general, vascular, trauma) surgery.82–90 Frequently observed side-effects consisted of
increased systemic and pulmonary arterial resistances, decreased cardiac output, jaun-
dice, and increased activities of amylase, lipase and hepatic transaminases.86–88,90

Whether the increased enzyme activities must be judged as signs of pancreatitis or
whether they may be related to interference with photometric laboratory tests has
to date not been fully elucidated.91

However, a sustained reduction of allogeneic blood transfusion (up to postoperative
day 7) attributable to the use of an HBOC has been reported by only two authors83,88,
but the blood-sparing potential was limited to only 260–600 mL pRBC. The clinical
relevance of this finding has been critically discussed by the authors themselves. A rea-
son for the finding may be the short intravascular half-life of HBOCs. The short-term
application only postpones the allogeneic blood transfusion. To achieve an effective re-
duction of RBC transfusions, HBOCs must be infused over a longer term, theoretically
until the erythropoiesis can provide a sufficient quantity of autologous RBCs. Regarding
the long-term use of HBOCs, only case reports are currently available.92,93

Finally, the clinical impact of vasoconstrictive activity exerted by most HBOCs is
not yet fully understood. Experimental data indicate that these properties may be
harmful with respect to nutritional blood flow and organ function.94,95 Therefore
the availability of a non-vasoactive HBOC may be desirable. Maleimide-activated poly-
ethylene-glycol-modified haemoglobin (Hemospan�, Sangart Corp.) represents such
an HBOC featuring a low haemoglobin concentration (4 g/dL), a high oxygen affinity
(p50 5.9 mmHg) and a high viscosity (2.5 cP). These characteristics, at first sight coun-
terintuitive, have been demonstrated to provide sufficient tissue oxygenation on the
microcirculatory level.96,97 Currently, Hemospan� has finished testing phases I and
II, and a clinical phase-III trial is scheduled for 2006.98

To date, no HBOC with worldwide approval is available for routine clinical use.
Only the bovine HBOC Hemopure� (Biopure Inc., Cambridge, USA) had been ap-
proved by the South African Ministry of Health in April 2001. The decisive factor
for this regional approval might have been the high incidence of infectious diseases
among blood donors in South Africa. However, in 2002, Biopure filed approval by
the FDA, the procedure is still pending.70 The blood-sparing potential of both types
of artificial oxygen carrier currently under investigation (PFC and HBOCs) has been
proven in experimental as well as in clinical studies. Nevertheless, the approval of a par-
ticular synthetic oxygen carrier by the FDA is not yet not foreseeable. Further re-
search and development activities targeting the identification of an ideal oxygen
carrier suitable for clinical use remains an issue of substantial interest.

Practice points

� the indication to transfuse allogeneic blood must be based on a critical judge-
ment of necessity
� augmentation of anaemia tolerance allows a restrictive transfusion policy to be

extended
� among autologous transfusion techniques, ANH and/or ICS are the most

effective
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fusion. Anaesthesist 2005; 54: 741–754.

*62. Spahn DR & Kocian R. Artificial O2 carriers: status in 2005. Current Pharmaceutical Design 2005; 11:

4099–4114.

63. Riess JG. Understanding the fundamentals of perfluorocarbons and perfluorocarbon emulsions rel-

evant to in vivo oxygen delivery. Artificial Cells, Blood Substitutes, and Immobilization Biotechnology 2005;

33: 47–63.

64. Spahn DR, Willimann PF & Faithfull NS. Die Wirksamkeit der Augmentierten Akuten Normovolä-
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